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Abstract

The ambipolar �eld model in Aleph replaces kinetic electrons with an ideal gas whose

density is equal to the local ion density and whose temperature is a speci�ed uniform

value. This approximation allows one to avoid the numerical constraints on timestep

and spatial resolution imposed by the plasma frequency and Debye length, respectively.

We derive an analytic model for ambipolar spherical expansion and compare it to the

results of Aleph simulations. The ion density and average ion energy as functions of

radius agree with the analytic model. However, the algorithm generates signi�cant

numerical heating of the ions. This can be reduced, to an extent, by decreasing the

timestep and using more macroparticles to represent the ions.
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Figure 1. Spherical expansion of an isothermal plasma with Te = 1 eV. Plot (a) compares

radial ion density pro�le from Aleph (version 4454) to analytic model and plot (b) compares

ion energy vs. radius to analytic model. See Sec. 4.2 for details of this calculation.

Executive Summary

The ability to treat plasma expansion over a large density range is needed to follow the
motion of dense plasmas generated at electrode and insulator surfaces in vacuum. Using
an explicit, kinetic, particle-in-cell model often results in prohibitively long calculations due
to numerical stability constraints imposed by light, fast-moving electrons. As a result, one
would like to use models where these constraints can be avoided. One of the simplest models
is to replace the kinetic electrons with an ideal electron gas characterized only by a density
and temperature. The temperature has a user-speci�ed value and the density is obtained
from the quasineutrality assumption, namely, that the electron gas density is locally equal to
the ion density. The ions are advanced using a standard kinetic, particle-in-cell algorithm.
This treatment is called the �ambipolar� algorithm in Aleph. In this report, we evaluate the
algorithm by using it to model a spherically-expanding plasma where the density changes
by about a factor of 360. We derive an analytic solution to this problem and use it to check
the Aleph results. The radial density pro�le agrees with the analytic model, as shown in
Fig. 1(a). We observe that the algorithm produces signi�cant numerical heating of the ions
(Fig. 1(b)). This because the ambipolar electric �eld is obtained from the gradient of the ion
density. Reducing the timestep and increasing the number of macroparticles per cell both
reduce the numerical heating, at the cost of increased computation time.
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1 Introduction

Aleph's ambipolar-�eld algorithm treats a dense plasma by advancing kinetic ions in the
electric �eld generated by the thermal pressure of the neutralizing electrons. This algorithm
allows one to go to much higher plasma densities than is practical using an explicit kinetic
algorithm for the electrons. Various implicit treatments of kinetic-electron dynamics have
been developed over the years [1�3], but are not currently available in Aleph. To evaluate
the ambipolar algorithm, we use it to model spherical expansion of a plasma. We assume
the existence of a steady-state spherically-symmetric plasma source inside a small region.
Quasineutral plasma �ows out from this region, and expands to a radius ten times that of
the source region boundary. In the simulation we do not model the source, only the plasma
expansion between spherical in�ow and out�ow surfaces. The simulation volume is shown
in Fig. 2.

In Sec. 2, we give the equations for the ambipolar algorithm and apply a normalization
scheme to identify the free parameters. In Sec. 3 we derive an analytic solution for steady-
state spherically-symmetric expansion, and show that the ions have to be injected at or above
the ion �sound speed� at the in�ow surface. We give analytic results for density, velocity, and
electric �eld as functions of radius. Section 4 describes the Aleph calculations, and compares
the results to the analytic model. We carried out a �reference� simulation and then varied
several numerical parameters to see their e�ect on the electric �eld noise level. A discussion
of the results is given in Sec. 5.
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Figure 2. Model geometry for plasma expansion and tetrahedral �nite-element mesh

created by Cubit. Axis units are mm. Cubit 14.1 input �le is in Appendix A.
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2 Equations for Aleph ambipolar model

In Aleph, the equation of motion of an ion is

mi
dvi
dt

= ZieE(xi), (1)

where mi is the ion mass, vi is the non-relativistic velocity of the ion at position xi, Zi is the
integer charge-state of the ion, and E is the electric �eld at xi. Rather than solving Poisson's
equation for the electric �eld E(x) (which is precluded by the quasineutrality assumption),
we obtain E by assuming that the electron gas is always approximately in force balance:

neme
dve
dt
≈ 0 ≈ −neeE−∇pe, (2)

where ne is the electron density, ve is the electron mean velocity, and pe is the electron
pressure. Aleph uses the isothermal ideal-gas relation pe = nekTe for the electrons, where Te
is a speci�ed constant, uniform, electron temperature. Equation 2 gives

E ≈ −kTe
ene
∇ne ≈ −

kTe
e

∇ni
ni

, (3)

where we have used quasineutrality to replace ne with the ion density ni. Equation 1 now
becomes

dvi
dt

= −ZikTe
mini

∇ni = −c2i
∇ni
ni

, (4)

where ci ≡
√
ZikTe/mi is the ion sound speed (we assume Ti � Te). For a spherically-

expanding plasma, the right side of Eq. 4 is positive since ∇ni < 0, and therefore the ions
are accelerated outward by the ambipolar electric �eld. Equation 4 is the equation used in
Aleph to advance the ions. The ambipolar electric �eld model is invoked by the line

electromagnetic model for block_1 = ambipolar, Te = {Te_K}, ...

in the Aleph (version 4554) input �le (see Appendix B).
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Table 1. Normalization of variables.

Quantity: Symbol Normalize to:

Radial position r R
Time t R/ci

Ion radial velocity v ci
Ion kinetic energy 1

2
miv

2 mc2i
Ion density n n0

Electric potential φ kTe/e
Radial electric �eld E kTe/Re
Ion potential energy Zieφ ZikTe

3 Analytic solution for steady-state expansion

We can obtain an analytic solution for a steady-state spherically expanding plasma obeying
Eq. 4. To simplify the equations, we use the normalization scheme in Table 1, where R is
the radius of the out�ow surface in Fig. 2, and n0 is the ion density at the in�ow radius r0.
Using caret symbols to denote normalized quantities, the radial component of Eq. 4 becomes

dv̂

dt̂
= −∇̂n̂

n̂
. (5)

Using the chain rule
d

dt̂
=
dr̂

dt̂

d

dr̂
= v̂

d

dr̂
, (6)

Eq. 5 becomes

v̂
dv̂

dr̂
= − 1

n̂

dn̂

dr̂
, (7)

which we can integrate to obtain

v̂2

2
=
v̂20
2
− log n̂, (8)

where v̂0 is the normalized ion velocity at the in�ow surface. This equation describes the
conservation of energy, in normalized form, for the ions. In steady state, the total ion �ux
is independent of radius, so we obtain (since n̂ = n̂0 = 1 at r̂0)

n̂v̂r̂2 = v̂0r̂
2
0. (9)

Substituting for n̂ in Eq. 8 and rearranging terms gives

r̂

r̂0
=

√
v̂0
v̂

exp

(
v̂2 − v̂20

4

)
. (10)
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This is an implicit equation for v̂(r̂). We can show that it imposes a constraint on the ion
in�ow velocity v̂0. Expanding the RHS in δv̂ = v̂ − v̂0 gives

r̂

r̂0
≈ 1 +

δv̂

2v̂0

(
v̂20 − 1

)
. (11)

We see that in order for an ion to accelerate (δv̂ > 0) rather than decelerate for r̂ > r̂0 , we
require v̂0 > 1. In physical units, this means that the ions must be injected with a supersonic
velocity v0 > ci. This is analogous to the Bohm condition for ions entering a non-neutral
sheath at a planar wall/plasma interface. The kinetic energy of an ion with velocity ci is
1
2
mic

2
i = 1

2
ZikTe. Thus, if the electron temperature is 1 eV, the ions must be injected with

a minimum kinetic energy of 0.5 eV (for Zi = 1).

The free parameters in this system are the electron temperature Te, the in�ow-boundary pa-
rameters r0, n0, v0 (subject to the above constraint), and the outer radius R. Radial pro�les
of all the physical quantities can be obtained from a set of universal curves parametrized by
the value v̂0 = v0/ci. Figures 3 and 4 give ion density and kinetic-energy pro�les for v̂0 = 1
(the minimum value) and v̂0 =

√
5 (a factor of 5 larger initial kinetic energy). For ν̂0 = 1,

we see that the ion density drops by a factor of about 360, and the ions accelerate to about
13 times their initial energy (0.5 eV to 6.4 eV) as the plasma expands by a factor of 10 in
radius. At �ve times the minimum energy, these factors drop to about 180 (density) and 3
(energy).

Two further useful expressions can be derived. The radial electric �eld is given by

Êr(r̂) =
2

r̂

(
v̂2

v̂2 − 1

)
→ 2

r̂
for large v̂, r̂, (12)

and the time for an ion to travel from r̂0 to a given radius r̂ > r̂0 is

t̂ =

ˆ r̂

r̂0

dr̂

v̂(r̂)
=

√
v̂0r0
2

ˆ v̂(r̂)

v̂0

v̂2 − 1

v̂5/2
exp

(
v̂2 − v̂20

4

)
dv̂. (13)

A plot of the radial electric �eld from Eq. 12 is shown in Fig. 5. For the minimum value
of in�ow ion energy, the electric �eld is singular at r0. The singularity is integrable, so that
the energy acquired by an ion passing through it is �nite (see Fig. 4). From this �gure and
from Eq. 12, we also see that at large radius, the electric �eld is independent of v0.

Equation 13 can be integrated numerically to �nd the time it takes for an ion to travel a
given distance. For example, an ion starting at the minimum energy takes t = 0.31R/ci to
travel from r0 to R = 10r0.
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Figure 3. Normalized ion density as a function of radius in steady state for two values of

normalized ion in�ow velocity (corresponding normalized initial kinetic energies are shown

in parentheses).

Figure 4. Normalized ion energy as a function of radius in steady state, for two values of

normalized ion in�ow kinetic energy. Energy is normalized to ZikTe.
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Figure 5. Normalized radial electric �eld vs. radius for two values of the normalized ion

in�ow kinetic energy.
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Table 2. Physical parameters for Aleph simulations. For normalization, see Table 1.

Parameter Symbol Value Unit Normalized value

Inner radius r0 0.01 m 0.1
Outer radius R 0.1 m 1

Injected plasma density n0 1016 m−3 1
Electron temperature kTe 1 eV

Ion mass mi 1.66× 10−27 kg
Ion charge state Zi 1 �
Ion sound speed ci 9.8× 103 m/s 1
Ion in�ow speed v0 9.8× 103 m/s 1

Time limit T 1.8× 10−5 s 1.76

4 Aleph results

The geometry for the Aleph calculations, shown in Fig. 2, consists of one half of a hollow,
spherical, 20◦ wedge. This shape is used to obtain the smallest mesh consistent with spherical
symmetry in a 3D �nite-element code. (Aleph does not have a spherical� or cylindrical�
coordinates option.) The plasma in�ow and out�ow surfaces are spherical, with radii of 10
and 100 mm, respectively. The remaining sides of the expansion volume are planar surfaces
where mirror-symmetry boundary conditions are imposed. Ions are injected uniformly and
continuously at the inner radius (r = r0) of the meshed region at the ion sound speed,
which, as we saw in Sec. 3, is the smallest velocity consistent with a steady-state solution.
The presence of neutralizing electrons is accounted for through the electric �eld (see Sec. 2).
The ions expand into the vacuum region and are absorbed when they reach the out�ow
surface.

The physical simulation parameters are given in Table 2, and this set of values was used
in all the simulations. Numerical parameters are given in Table 3. Square brackets contain
lists of values used in di�erent simulations. The �macroparticle weight�, Wp, is the number
of real ions represented by one simulation macroparticle. The value is obtained by �rst
picking a desired value of the �macroparticles/cell� parameter near the in�ow surface, and
then calculating the macroparticle weight needed to get this number given the plasma density
and cell volume. We used the expression ∆x3/6

√
2 for the volume of a regular tetrahedron

with edge length ∆x (although the tetrahedrons generated by Cubit are not regular, in
general). Smaller values of Wp mean that more macroparticles are needed to represent a
given physical density, and this gives better resolution of the particle distribution.

Temporal averaging is used in Aleph to reduce numerical noise. In these calculations, we
used the moving-window option, where the code keeps the last Nwin values of the density at
each node, and averages these on each timestep. The ambipolar �eld is then calculated from
Eq. 3 using these averaged density values.

15



Table 3. Numerical parameters for Aleph simulations. Where more than one value is

given, the �rst value is the one used in the �reference� simulation. For normalization, see

Table 1.

Parameter Symbol Value Unit Normalized value

Cubit mesh size ∆x 1.745 mm 0.01745
Timestep ∆t [60, 6] ns 5.87× 10−3

Macroparticles/cell at r0 Nc [100, 1000] ions
Macroparticle weight Wp [12, 1.2]×105 ions
Smoothing window Nwin [100, 1000, 1] steps

4.1 Reference-simulation results

Our �reference� simulation is the one using the �rst values in the square brackets in Table 3.
Results are shown in Figs. 6�8.

The 2D color-map plots in Fig. 6 show the ion density and Ez �eld component in the
horizontal x�z �mid-plane� of the spherical wedge (see Fig. 2). In this plane, the z�axis is
the equivalent of the radial coordinate in spherical coordinates. The radial density pro�le in
Fig. 6(c) is reasonably smooth and agrees well with the analytic result. The radial electric
�eld Ez(z) in Fig. 6(d) agrees on average with the analytic result, but is very noisy. The
noise is due to the fact that in the ambipolar approximation, E is obtained from the spatial
gradient of the density (Eq. 3), and this ampli�es the particle noise already in the density.
The noise in E leads to a large spread in the ion energy, as shown in Fig. 7. The average ion
acceleration in Fig. 7(b) follows the analytic result. The energy distribution for the group
of ions near r = 5 cm in Fig. 8(a) is plotted in Fig. 8(b), and shows the large noise-induced
spread about the analytic value. (The height of the vertical analytic line in Fig. 8(b) and
similar �gures below is arbitrary.)

4.2 Noise-reduction calculations

We carried out the following calculations to attempt to reduce the electric-�eld noise seen
in the reference simulation:

1. Reduce timestep by a factor of 10, with several values of the temporal-smoothing
window size (Nwin).

2. Increase number of macroparticles by a factor of 10.

3. Combine (1) and (2).

These measures reduce the noise, as described below, though considerable noise still remains.
Using factors larger than 10, one may be able to reduce the noise to any desired level, at

16



Figure 6. Field plots from Aleph reference simulation at 18 µs (MKS units): (a) shows

density color map, and (b) shows the Ez �eld component color map. Both of these are in the

x�z mid-plane (Fig. 2). Plot (c) compares the radial density pro�le ni(z) with the analytic

result, and (d) compares Ez(z) with the analytic result. Plots (c) and (d) are along the

radial white line in (a).
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Figure 7. Particle plots from Aleph reference simulation at 18 µs showing (a) spatial

positions of ions, and (b) comparing ion energies vs. radius to the analytic result.
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Figure 8. Ion energy vs. radius for the reference simulation is shown in (a). Energy

distribution for red-colored ion sample near r = 5 cm is plotted in (b).
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the expense of increased computation time. Spatial smoothing was not tried, but may be
bene�cial. The physical parameters (Table 2) were kept the same for all runs.

Reduced timestep

For the timestep ∆t= 60 ns used in the reference simulation, ions with the minimum injection
velocity move approximately ∆x/2 in one timestep, where ∆x is the cell edge length. On
each timestep, the ion density at each node is calculated from the ions that lie within one
cell of the node. Reducing the timestep is motivated by the idea that this will reduce the
density �uctuations from one timestep to the next. We used ∆t′ = 6 ns in this calculation,
a factor of 10 reduction from the reference simulation. The width of the moving-average
window, twin = Nwin∆t, was kept the same (6 µsec) by increasing Nwin from 100 to 1000. No
other numerical parameters were changed. The results in Fig. 9 show a signi�cant reduction
in the particle energy spread.

Additional calculations with Nwin = 100 and Nwin=1 gave results very similar to those
in Fig. 9. This indicates that the reduced noise comes from reducing the timestep, and that
temporal smoothing has little e�ect on the noise.

In Fig. 9(b), we see that the mean simulated ion energy at r ≈ 5 cm is less than the
analytic value. This is mainly a result of the singularity in the electric �eld at r0 when
the ions are injected at the minimum velocity v0 (Fig. 5). Finer mesh resolution near the
injection boundary should improve agreement in the mean energy. Injecting the ions at a
larger initial velocity would eliminate the singularity in E.

Increased number of macroparticles

Here we increased the number of macroparticles by a factor of 10. In Aleph, this is achieved
by reducing the macroparticle �weight� so that more macroparticles are used to represent the
physical density. Other parameters were the same as in the reference simulation. The results
in Fig. 10 again show a reduction of the noise level, though not as much as by reducing the
timestep. The extra particles reduce the noise near the outer radius, where the particles/cell
count in the reference simulation drops below 1.

Reduced timestep and increased macroparticles

This calculation combines the factors-of-ten reduction in timestep and increase in particle
count used in the previous two calculations. The results in Fig. 11 have the lowest noise of
the three modi�ed calculations, indicating that the noise-reductions obtained with a smaller
timestep and by adding more macroparticles appear to be additive.

20



Figure 9. Ion energy vs. radius for simulation with timestep reduced by factor of 10 is

shown in (a), along with the analytic result. Energy distribution for red-colored ion sample

near r = 5 cm is plotted in (b).
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Figure 10. Ion energy vs. radius for simulation with factor of 10 more macroparticles

is shown in (a), along with analytic result. Energy distribution for red-colored ion sample

near r = 5 cm is plotted in (b).
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Figure 11. Ion energy vs. radius for simulation with both reduced timestep and more

macroparticles is shown in (a), along with the analytic result. Energy distribution for red-

colored ion sample near r = 5 cm is plotted in (b).
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5 Discussion

These results show that the ambipolar algorithm in Aleph is stable and robust. Because
the electric �eld is computed from the derivative of the ion density, it ampli�es the noise in
the ion density. The resulting electric �eld noise leads to numerical heating of the ions. By
contrast, the usual method of calculating the electric �eld from Poisson's equations has a
smoothing e�ect on numerical noise in the particle density.

An analytic solution for steady-state isothermal spherical expansion from a source region
was derived. The solution gives the radial pro�les of ion density and energy. A minimum
initial ion kinetic energy equal to one-half of the electron thermal energy is required for
steady-state expansion. Ions starting with the minimum energy are accelerated to about 13
times this energy as the plasma expands a factor of 10 in radius, and the density drops by a
factor of about 360. The acceleration is caused by the ambipolar electric �eld generated by
electron thermal pressure.

The steady-state radial pro�les of ion density and average ion energy obtained from Aleph
simulations agree with the analytic model. The numerical heating of the ions can be reduced
at the expense of increased computation time by reducing the timestep and by increasing the
number of macroparticles. The fact that temporal smoothing was found to have little e�ect
on the electric �eld noise suggests that the noise is spatial rather than temporal. Spatial
smoothing similar to that associated with a Poisson solver may be bene�cial.

The ambipolar model assumes a constant, uniform electron temperature. A previous,
fully-kinetic plasma-expansion calculation with Aleph (see Fig. 8 in Ref. [4]) showed evidence
that electron temperature decreases as a function of radius. (The plasma expanded just a
factor of two in radius.) This e�ect could be captured in Aleph by using a pressure-density
relation of the form p/nγ = constant, where γ is the �adiabatic index�. For the isothermal
model used in the present calculations, γ = 1, while for adiabatic expansion of an ideal gas,
γ = 5/3. The value γ ≈ 4/3 gave a reasonably good �t to the kinetic electron temperature
in Ref. [4].

It may be worthwhile to investigate a compressible-�uid treatment based on the Euler
equations for both ions and electrons in order to avoid the numerical heating seen in the
calculations described here.
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A Cubit input �le

The mesh in Fig. 2 was generated with Cubit 14.1. The following mesh information was
written by Cubit:

Executive Exodus summary:

Number of dimensions = 3

Number of element blocks = 1

Number of sidesets = 3

Number of nodesets = 3

Number of bc sets = 1

Number of elements = 201467

Number of nodes = 37402

The Cubit input �le is listed below:

1 ## /projects/cubit/claro.Lin64.14.1/bin/clarox
## Cubit Version 14.1
## Cubit Build 390213
## Revised 2014-01-20 08:40:22 -0700 (Man, 20 Jan 2014)
## Running 01/24/2014 10:20:45 AM
## Command Options:
## -warning = On
## -information = On

10 # spherical half-wedge (20 degrees)

# Parameters
# {rmin=10.0}
# {rmax=100.0}
# {Lmax=2*rmax+1.0}
# {half_angle=10.0}
# {dx=1.745}
#
reset

20 undo on

# Create the inner and outer spheres
Create sphere radius {rmax}
create sphere radius {rmin}
volume 1 rename "outer_sphere"
volume 2 rename "inner_sphere"
chop outer_sphere with inner_sphere
delete inner_sphere

30 #Trim the sphere into a frustum with bricks
create brick x {Lmax} y {Lmax} z {Lmax}
move volume 5 x {Lmax/2}

rotate volume 5 about y angle {half_angle}

create brick x {Lmax} y {Lmax} z {Lmax}
move volume 6 x {-Lmax/2}
rotate volume 6 about y angle {-half_angle}
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40 subtract volume 5 from volume 4
subtract volume 6 from volume 4

# Cut the slice in half
create brick x {Lmax} y {Lmax} z {Lmax}
move volume 7 y {Lmax/2}
subtract volume 7 from volume 4

# Generate sidesets and nodesets
sideset 1 surface 31

50 nodeset 1 surface 31
sideset 2 surface 33
nodeset 2 surface 33
sideset 3 surface 29 30 32
nodeset 3 surface 29 30 32

# Create the tet mesh
volume all size {dx}
volume all scheme tetmesh
mesh volume all

60
block 1 volume all
block all element type tetra4

# Change units to meters for Aleph
transform mesh output reset
transform mesh output scale 1.0e-3

export genesis "slice3.g" block all dimension 3 overwrite
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B Aleph input �le

Aleph version 4454 was run using the commands:

aprepro -d expansionH4.in expansionH4A.in

./aleph expansionH4A.in >&alog4&

The following is the input �le for the reference calculation described in Sec. 4.

1 Sensitivity Level = UUR

# Model an expanding quasineutral plasma

# new mesh: 1/2-slice of a 20-degree spherical edge
# new mesh: half the resolution

# Compile flags:
# -j8 -DBUILD_H5PART=1

10

### APREPRO Section

## CONSTANTS

# constants
# {nsec = 1.0e-9} seconds
# {eV = 11604.0} K
# unit charge {qe = 1.6e-19} Coulomb

20 # atomic mass unit {AMU = 1.66e-27} kg
# Boltmann constant {kB = 1.38E-23} J/K

## PHYSICS SETUP

# electron temperature (eV) {Te_eV = 1.0}
# electron temperature (K) {Te_K = Te_eV*eV}
# ion charge state {ZI = 1.0}
# ion charge (C) {qI_C = ZI*qe}
# ion mass (AMU) {mI = 1.0}

30 # ion mass (kg) {mI_kg = mI*AMU}
# Bohm velocity {vB = sqrt(ZI*kB*Te_K/mI_kg)}

# ion density at injection {n_inj = 2.0e17} per m3
# ion speed at injection {v_inj = vB} m/s

# ion weighting {wI = 1.25e6}

## TIMESTEPS

40 # timestep {dt = 60.0*nsec}
# time limit {tmax = 18000.0*nsec}
# timesteps {nsteps = nint(tmax/dt)}

# rebalance every {nbal = 100} steps

## OUTPUT

## sliding window size for ambipolar field (steps) {win_size = 100}
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50 ## desired number of frames in field output {fframes = 20}
# Exodus stride {fstride = int(nsteps/fframes)}
# {fstride = max(fstride, 1)}
## number of timesteps to average fields over {n_avg = 100}
# Take the minimum: {n_avg = min(n_avg, fstride)}

## desired number of frames in particle output {pframes = 20}
# H5PART stride {pstride = int(nsteps/pframes)}
# {pstride = max(pstride, 1)}

60 ## desired number of samples in probe output {hsamp = 200}
# probes stride {hstride = int(nsteps/hsamp)}
# {hstride = max(hstride, 1)}

### END APREPRO Section

# General controls

units = SI
70 random number generator seed = 314

# time

timestep size = {dt} # seconds
total number of timesteps = {nsteps}

# restarts
restart stride = off
restart file name = restart1.dat, toggle=restart2.dat

80
#read restart file = restart2.dat

# field solve
electromagnetic model for block_1 = ambipolar, Te = {Te_K}, \

output_name = E_ambi \
ion_density_window = [sliding, size={win_size}], \
ion_density_smoothing_level = 0, \
ion_density_output_name = n_ambi, \
ion_gradient_smoothing_level = 0, \

90 ion_gradient_output_name = dn_ambi

potential field solve stride = off

# parallelization
rebalance stride = {nbal}, method = geometric, weighting = constant, \

schedule = constant
output load rebalancing particle data = yes

# mesh
100 #Executive Exodus summary:

# Number of dimensions = 3
# Number of element blocks = 1
# Number of sidesets = 3
# Number of nodesets = 3
# Number of bc sets = 1
# Number of elements = 201467
# Number of nodes = 37402
#Finished writing slice3.g

110 input mesh file name = slice3.g

#
# Particle types
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#

define particle H+ mass={mI_kg}, charge={qI_C}, category=ion

#
# Initial Conditions

120 #

# particles

particle weighting for H+ = {wI}

#
# Boundary conditions
#

130 # set 1: outer radius
# 2: inner radius
# 3: sidewalls

# fields
# no field BCs for ambipolar

# particles

BC for particles on default is specular for default
140

# inject ions
BC for particles on surface_2 is normal_influx of H+ at density={n_inj}, \

T = 0, vnormal = {v_inj}

# outflow at injection surface
BC for particles on surface_2 is outflux for default

# outflow at outer surface
BC for particles on surface_1 is outflux for default

150
#
# Interactions
#
interaction stride = off

#
# Reweighting
#
reweighting stride = off

160
#
# Output
#

# fields on nodes/elements

Exodus output file name = f.ex2
Exodus output stride = {fstride}

170 # number densities
output nodal density for H+, name = n_Hp_nd, element_block=all, \

window=discrete,size=1
output nodal density for H+, name = n_Hp_nd_avg, element_block=all, \

window=discrete,size={n_avg}

# summed charge density
output solver charge density = true, name = rho, element_block=all, \

window=discrete,size={n_avg}
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180 # injected current
output nodal current_density for H+ on surface_2, name= j_Hp_inj, \

window=discrete,size=1

# outflow current
output nodal current_density for H+ on surface_1, name = j_Hp_out, \

window=discrete,size=1

# temperatures
output elemental temperature for H+, name = temp_Hp_el, \

190 window=discrete,size=1

# electric field (automatic)

# diagnostics
output elemental computational_count for H+, name = Hp_count_el, \

window=discrete,size=1
output elemental proc_ids = true
output elemental global_ids, element_block = all, name = gid_el

200 # particles

#particle dump file name = particles.lps
particle dump file name = p.h5part, file type=h5part, attributes = local_id, \

type, x, y, z, vx, vy, vz, stride={pstride}, fraction = 1

# status reports

output global computational_count for H+, name = H+_count, \
window=discrete,size={hstride},stride={hstride}

210
# injection
output global current for H+ on surface_2, name = H+_current_inj, \

window=discrete,size={hstride},stride={hstride}
output global integrated_flux on surface_2 for H+, name = H+_flux_inj, \

window=discrete,size={hstride},stride={hstride}
output global particle_kinetic_energy on surface_2 for H+, name=H+_KE_inj, \

window=discrete,size={hstride},stride={hstride}

# outflow
220 output global current for H+ on surface_1, name = H+_current_out, \

window=discrete,size={hstride},stride={hstride}
output global integrated_flux on surface_1 for H+, name=H+_flux_out, \

window=discrete,size={hstride},stride={hstride}
output global particle_kinetic_energy on surface_1 for H+, name=H+_KE_out, \

window=discrete,size={hstride},stride={hstride}

# status output

status report name = stdout columns = timestep, simulation_time, H+_count, \
230 stride={hstride}

status report name = globals.dat format = gnuplot,\
columns= timestep,\
simulation_time,\
H+_count,\
H+_current_inj,\
H+_flux_inj, \
H+_KE_inj, \
H+_current_out,\
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240 H+_flux_out, \
H+_KE_out, \
stride={hstride}

status report name = memory.dat format = gnuplot,\
columns = timestep,\
simulation_time,\
high_mb_min_used,\
high_mb_max_used,\
high_mb_min_free,\

250 high_mb_max_free,\
stride={hstride}

status report name = seq_timers.txt columns = sequential_timers stride={hstride}
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